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ABSTRACT

A detailed numerical investigation of the coupling between the vibration of a flexible

plate and the acoustic radiation is performed. The nonlinear Euler equations are used to

describe the acoustic fluid while the nonlinear plate equation is used to describe the plate

vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant

acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling

is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a

significant effect on the vibration level as the loading increases. The radiated pressure from

a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into

the far-field. However, the nonlinearity due to wave propagation is much weaker than that

due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative

difference in level between the fundamental and its harmonics and subharmonics decreases

with distance.
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2Research was supported by the National Aeronautics and Space Administration under NASA Contract

Nos. NASl-18605 and NASl-19480 while the third author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-
0001.
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1. Introduction

The vibration of a flexible structure excited by an acoustic disturbance has been exten-

sively studied [1-13]. These studies often account for both linear and nonlinear responses,

depending upon the amplitude of the excitation mechanism. It has been shown [14] that

the coupling between surface motion and the near-field pressure is significant when the

surface response is nonlinear, while for a linear response the surrounding pressure field re-

acts passively with the surface motion. In a recent work Frendi et al. [15] have studied the

problem of a vibrating flexible surface in a supersonic boundary layer. They found that,

under reasonable conditions, the vibrating surface could significantly change the structure

of the boundary layer over time scales that are long compared to the characteristic time

scales of the flow field. The results suggested that the presence of the flexible surface may

alter the stability of the boundary layer.

In a wind tunnel experiment, Maestrello and Grosveld [16] found that a flexible plate

excited by the combination of boundary layer and sound responded nonlinearly. Recently,

Maestrello et al. [17] carried out an experimental and numerical study on the response

of a typical aircraft panel to time harmonic, plane acoustic waves at normal incidence.

The frequency of the excitation field was chosen to be the fifth natural frequency of the

panel. By increasing the amplitude of the excitation source from 110 dB to 135 dB, the

response of the panel changed from linear to chaotic. The route to chaos was found to

be through a series of successive period doubling bifurcations. The near-field and far-field

pressures were measured and found to behave in a similar way. However, in the far-field a

higher level of harmonics relative to the fundamental was observed, which was believed to

be the result of nonlinear wave propagation. Using a finite element method, Robinson et

al. [18] integrated the nonlinear plate equations subject to a high-intensity random noise

in order to predict the plate response. Their numerical results were in good agreement

with experiments for the linear case; however, in the nonlinear case the broadening of

the spectrum was overestimated. Their model did not account for the coupling to the

surrounding acoustic fluid. Mei and Prasad [19] and Prasad [20] used a nonlinear damping



model in an attempt to explain some experimental phenomena observed for aircraft panels

excited by a high intensity sound. They found that the presence of nonlinear damping

contributed significantly to the broadening of the response peak at high excitation levels

and more realistic RMS deflections.

The problem of nonlinear propagation of acoustic waves emitted by a harmonically

vibrating flat plate is of great importance. It was shown by several authors [21-24] that

a finite amplitude wave having initially a sinusoidal shape will distort as it propagates.

The distortion was described as a compression of the wave front that eventually reaches

a point where a shock forms. In the frequency domain, the nonlinear propagation is

characterized by the development of high harmonics. This type of behavior has been

observed experimentally by Maestrello et aI. [17]. A subharmonic route to chaos has

also been observed by Lauterborn and Cramer [25,26] in their experiments on acoustical

turbulence. Therefore, during propagation both subharmonics and high harmonics are

created, leading to the broadening of the spectrum.

Motivated by the results obtained by Maestrello et al. [17] and Robinson et al. [18],

a two-dimensional model is developed to study the coupling between the vibration of a

flexible flat plate with the surrounding acoustic fluid. The fluid, initially at rest, is excited

only by the motion of the plate. The plate is forced at resonance by plane waves at normal

incidence. The focus of this paper is to analyze the effect of acoustic coupling (i.e. acoustic

damping) on the response of the flexible plate in the various vibration regimes: linear,

nonlinear, and chaotic. The problem of nonlinear wave propagation is also addressed.

The remainder of the paper is organized as follows: in the next section, the mathe-

matical modeI is presented, followed by a description of the numerical methods used. The

various results are then discussed, and finally, some concluding remarks are given.

2. Formulation of the model

The physical problem addressed in this paper is that of coupling the vibration of

a flexible surface with the surrounding acoustic fluid. The governing equations in the

acoustic fluid region are the two-dimensional, compressible, nonlinear Euler equations. In



a cartesian coordinate system, x and y, these equations can be written in conservation

form as:

Q_= F_+ Gy (1)

where Q is the vector (p, pu, pv, E) T, p is the density, pu and pv are the x and y momenta

respectively, and E is the total energy per unit volume given by

=_p(u 2+v 2)+pc,TE (2)
Z

with c_ being the specific heat. In eq. (1), the functions F and G are:

r

pu 2 + P

puv

u(E + p)

and

{ 2; )G= | pv2+ p • (3)

\ v(E + p)

In addition to eq. (1), an ideal gas state equation is used:

p = pnT, (4)

where p is the pressure, p the density, R the gas constant, and T the temperature.

The equation describing the motion of the flexible surface is:

04 w 02 w _ 02 w p Ow
D-O-_x4 - N_-ffj + pph-o-- _- + Ot = Ap

(5)

where w is the plate transverse deflection, pp the mass per unit volume of the plate, h

the plate thickness, and r the physical damping. In eq. (5), D = Mha/12(1 - u 2) is the

stiffness of the plate, with M being the modulus of elasticity and u the Poisson ratio of

the plate material. The coefficient Nx in eq. (5) is given by

g_ = 2--T._o k Ox) dx, (6)



which represents the tension created by stretching of the plate due to bending. In eq. (6)

:Co is the origin of the flexible plate and L its length, see Pig. 1. The forcing term on the

right-hand-side of eq. (5) is

Ap = p- - p+ (7)

where p+ and p- are the pressures on the surface above and below the plate, respectively.

It is assumed that there is a pressure wave incident on the upper surface. We have

p+ = p_ + pi + pr + pS (8)

p- = p_ + pt (9)

where p_ is the ambient pressure and pi, pr p_ and pt are the incident, reflected, scattered

and transmitted pressure fluctuations, respectively. The scattered pressure is due to the

vibration of the flexible surface. Assuming that the fluid on both sides of the plate is the

same then the radiated pressure field is anti-symmetric with respect to the plate, therefore

p, = _pS (10)

on the surface of the plate. The input pressure is defined as the sum of the incident and

reflected waves and is assumed to be of the form

pi + pr = esin(wt) (11)

where e and w are the amplitude and frequency, respectively. The forcing term of eq. (5)

can therefore be written as :=

Ap = 2p t esin(wt). (12)

Equations (1)-(12) are written in a n0ndimensional form using the following reference

quantities for the different variables;

(X, y, W)ref _- Ire f,

2

trey- Ire f, and T_I- c_
Coo Cv

P_el = P_,
aw

(u,., N-).I = and (p,E),._y 2 (13)

4



The various freestream fluid properties are those of air at sea-level conditions, which are:

temperature Too = 288.33 °K, density poo = 1.23 Kg/m a, pressure poo = 1.013x105 N/m 2,

and sound speed coo = 340 m/see. The specific heat at constant volume is Cv = 1.004

KJ/(Kg °K), the ratio of specific heats is 7 = cp/c,, = 1.4, and the reference length is

l,._ I = 0.3048 m.

For the results presented here, only the nondimensional quantities are shown on the

various graphs. The parameter of particular importance is the nondimensional excitation

amplitude e*, which is given by

C

_ . (14)
pooc_

3. Method of solution

The unsteady Euler equations (eq. (1)) are solved using an explicit finite difference

scheme. The scheme, which is a generalization of MacCormack's scheme obtained by

Gottlieb and Turkel [27], is fourth-order accurate in space and second-order accurate in

time. The numerical scheme, applied to a one-dimensional equation of the form

ut=F_, (15)

consists of a predictor step given by

At

u_* = u_ + 6---_-_x(-7Fi + 8Fi+l - Fi+2), (16)

followed by a corrector step of the form

At . ** 8F** 1
1 + u7 +

u'_ + ' = -_ -_x ( 7 Fi - i- , + F_*-*2) • (17)

In the above equations, the subscript i denotes the spatial grid point and the superscript n

the time level. The fourth-order accuracy is obtained by alternating the scheme given above

with its symmetric variant. We employ operator splitting to reduce the two-dimensional

problem to a sequence of one-dimensional problems. If Lx and Ly denote the solution



operatorsfor the one-dimensionalx and y problems, then the solution to eq. (1) is obtained

by

Q"+_= LxLyLyL_Q". (18)

Further details regarding the method and the advantage of fourth-order schemes can be

found in Bayliss et al. [28,29,30].

The boundary conditions employed on the plate for the Euler equations are

v = 0 and T = Tw (19)

over the rigid part of the plate, and

Ow
V--

Ot
and T = (20)

|

!

over the flexible part of the plate. In eqs. (19) and (20), T_ is a specified wall temperature,

in this paper it is taken to be the free-stream temperature. The x-component of the

velocity (u) is obtained through linear extrapolation from the interior over both the rigid

and flexible parts of the surface.

The pressure boundary conditions are as follows: over the rigid part of the surface

where the time rate of change of the normal momentum is zero, the pressure is calculated

using the normal momentum equation by simply imposing the normal gradient of the sum

of pressure and vertical momentum flux to be zero ( o@(p+ pv 2) = 0). Over the flexible part

of the surface a linear extrapolation from the interior is used. We first update the pressure

to the new time level using Ow/Ot at the previous time level, and then, using the new value

of pt, we solve the plate equation to update w. The remaining boundary conditions are

derived using the method of characteristics [31]. Radiation boundary conditions [32] have

also been used and compared to the characteristic ones. Both boundary conditions gave

the same results. We also compared the results obtained using a typical computational

domain (see Fig. 1) to that obtained using a much larger domain and found the results to

be unchanged.
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The plate equation is integrated using an implicit finite differencemethod for struc-

tural dynamics developedby Hoff and Pahl [33]. The calculation of Nx was done using

Simpson's rule of integration. The boundary conditions used to solve the plate equation

are those for a clamped plate

w = wx = 0 at x = x0, x0 + L. (21)

The problem of transient oscillations is common when trying to solve the time-

dependent structural equations. In order to eliminate the transient from the Euler in-

tegration, the plate equation is integrated to obtain a steady-state solution without the

coupling to the surrounding fluid. The steady-state displacement, velocity, and acceler-

ation profiles are then used as inputs to the Euler calculations to obtain a new steady

state.

4. Results and Discussion

The numerical experiments simulate the forced vibration of a plate in the presence of

an acoustic fluid at sea-level conditions. The properties of the flexible part of the surface

are assumed to be independent of position and are: stiffness D = 1.46 N-m, mass per unit

area pph = 2.26 Kg/m 2, a physical damping F = 131.2 N.sec/m 3, and a Poisson ratio

u = 0.3. The plate is 0.254 m long and 0.0508 cm thick. Figure 1 shows the computational

domain where the top boundary is composed of a flexible surface clamped between two

rigid ones. The domain is 6.1 m long in x and 3.05 m wide in y. The number of grid points

used in both directions is chosen according to the case being studied. In order to resolve

the regions of high gradients near the flexible surface, stretching is used in both directions.

By solving the eigenvalue problem corresponding to the linear unforced vibration of

the plate, one can find its natural frequencies. For the plate parameters given above, the

first nine natural frequencies are: 45 Hz, 122 Hz, 206 Hz, 396 Hz, 591 Hz, 826 Hz, 1100 Hz,

1413 Hz, and 1765 Hz. Alternate frequencies correspond to symmetric and anti-symmetric

modes of the plate. In this paper we consider excitation at 591 Hz. This frequency is

chosen because it is close to the frequency used in the experiment (see Maestrello et aI.
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[17]). A sequenceof solutions are obtained for increasing valuesof the amplitude of the

acousticexcitation (e*). For eachvalueof acousticexcitation, weconsiderthe displacement

at the centerof the flexible plate, the pressureat the centerof the plate (V = 0, z = 10.0),

taken as representative of the near-field pressure, and the far-field pressure at the same

z location and at y = -8.0. We will present figures illustrating the time history of the

selected quantity, the power spectral density (PSD), a phase diagram by plotting the time

derivative against the quantity, and a Poincar6 map plotting the (n+l) maximum of the

time series against the nth maximum. We also present surface plots of the instantaneous

pressure field. In addition, we will compare the computed plate response to the response

obtained when the coupling to the acoustic fluid is neglected, as is sometimes done in

engineering applications.

• Linear Plate Response and Acoustic Radiation

At first, we consider the case of small amplitude forcing (e* = 0.0025) leading to an

essentially linear response. The plate response is illustrated by the data presented in Figure

2 for the displacement at the center. The time history and PSD indicate that the response

is time periodic and nearly sinusoidal. There is a very weak contribution to the third

harmonic, 3f; however, this harmonic contribution is not visible in the time history. We

note that there is no visible spike at the second harmonic, 2f, while there is such a spike for

the third harmonic. We believe that this is due to the fact that the frequency 3f is close to

the 9th mode of the plate. This mode is symmetric, and therefore the displacement at the

center is nonzero. The phase diagram is almost perfectly circular, as would be expected

from the nearly sinusoidal time history, and the Poincard map reduces to a single point.

Comparison with the PSD obtained from the uncoupled calculation indicates that, in this

case, the plate response is not significantly altered by accounting for the coupling with the

surrounding fluid.

The behavior of the pressure generated by the plate vibrations is illustrated in Figures

3 and 4. In Figure 3, we consider the pressure at a near-field point, while in Figure 4,

we consider the pressure at a far-field point. The data in these figures demonstrate that

the pressure is time periodic and nearly sinusoidal in both the near field and the far-field.

8



In both casesthere is no significant harmonic content. The phase diagrams are nearly

circular and the Poincar6 maps reduce to a point. In Figure 5, we present a surface plot of

the instantaneous pressure field. It can be seen from this figure that the pressure exhibits

a decaying sinusoidal pattern into the far-field. The radiation is nearly omni-directional

when referred to an angle measured from the center of the vibrating plate. We have verified

that the RMS of the pressure decays as 1/r 1/2 as expected from linear wave propagation

in two dimensions (r 2 = (x - xo - _)2 + y2).

• Weakly Nonlinear Plate Response and Acoustic Radiation

We next consider the behavior obtained by increasing the amplitude of the acoustic

excitation to e* = 0.031. In Figure 6, we illustrate the plate response by describing the

displacement at the center. The level of the third harmonic is now significantly higher than

for the previous case. This increased harmonic content is not directly apparent from the

time history; however, it is apparent from the phase diagram, which is no longer circular.

The increased harmonic content would be more visible in the plate velocity, Ow/Ot. The

Poincar6 map reduces to a single point.

This figure also illustrates a significant effect of the acoustic coupling. The PSD for the

uncoupled calculation exhibits enhanced harmonic content together with the generation

of noticeable subharmonics. Thus, in the uncoupled calculation, a transition has occurred

leading to subharmonic formation (f/3, which is close to the third mode, i.e. the second

symmetric mode of the plate). In the fully coupled calculation, there is only a negligible

blip at this frequency. The fully coupled response is characteristic of an uncoupled response

for a smaller excitation level. Thus, neglecting the coupling of the plate vibration to the

surrounding fluid can lead to an overprediction of the plate response at frequencies other

than the fundamental.

In Figures 7 and 8, we describe the pressure generated by the plate vibration in both

the near-field (Figure 7) and the far-field (Figure 8). The time history and PSD of the near-

field pressure clearly indicate significant harmonic content, as opposed to the displacement.

This is not surprising, as the pressure is obtained from the Euler equations using the normal

velocity, Ow/Ot, as a boundary condition, and differentiating the displacement emphasizes

9



the high frequencies. The phase diagram and Poincar6 map indicate that the near-field

pressure is time periodic; however, the nonlinear effects are quite visible in the highly

noncircular shape of the phase diagram.

The behavior of the far-field pressure, illustrated in Figure 8, exhibits a more complex

dynamical behavior. The time history shows three peaks within each cycle. In addition,

the temporal behavior no longer strictly repeats after each cycle. It can be seen that the

amplitudes of the 3f and 5f harmonics increase relative to the fundamental as compared

to the near-field pressure. The spectral peaks are broader than those in the near-field,

which is consistent with the lack of precise periodicity. In addition, the energy in the

subharmonic frequency band appears to have increased relative to the fundamental, and

some distinct frequency peaks have appeared. It appears that the resulting time history

is quasi-periodic with the spectral content generated by the fundamental and a second

frequency in the subharmonic frequency band. The frequency resolution is not sumcient

to judge whether this additional frequency is rationally related to the fundamental or not.

We note that the development of subharmonics as an acoustic disturbance propagates

nonlinearly has been observed by Lauterborn and Cralner [25,26]. The phase diagram

shows three loops, consistent with the three peaks per cycle in the time history. The lines

are thicker due to the lack of precise periodicity. Similarly, the Poincar6 map shows three

closely spaced regions; however, these regions are more spread out than for the linear case

due to the lack of precise periodicity.

Another effect of the nonlinear propagation of the acoustic radiation is an enhanced

decay with respect to far-field distance. In Figure 9, we plot the RMS of the pressure for

y = -4.0 and V = -8.0 and x : 10.0 and compare it to the 1/r 1/2 decay characteristic

of linear wave propagation in two dimensions. The decay rate is noticeably faster than

1/r 1/2. We also show the corresponding graph for the first case considered, which does

exhibit the expected decay rate.

In Figure 10 we present a surface plot of the instantaneous pressure field. This field

shows the more complex patterns that develop as the wave propagates nonlinearly. We

note that individual ripples appear to break up into multiple ripples, characteristic of the

10



generation of high frequencies.There is now a noticeable directivity to the radiation. In

particular, the highest level of radiation occurs alongdirections that are parallel or nearly

parallel to the plate, while the lowest level occurs for directions nearly perpendicular to

the plate (measuredrelative to the center).

• Quasi-Periodic Plate Response and Acoustic Radiation

When e* is increased to 0.032, multiple peaks develop in the spectrum with levels close

to that of the fundamental. This is characteristic of either a complex quasi-periodic or

chaotic response. The behavior of the displacement is shown in Figure 11. Computational

constraints limit the length of the time samples, and hence of the frequency resolution;

however, it appears from the data that the plate response is quasi-periodic rather than

chaotic. We note that there are strong frequency spikes at the fundamental and at ap-

proximately 200 Hz and 700 Hz and that the other noticeable spikes can be obtained

as combinations of these frequencies. Our frequency resolution is not sufficient to judge

whether these frequencies are rationally related or not; however, it is often the case that

quasi-periodic solutions with three incommensurate periods lose stability to chaotic attrac-

tors. The phase diagram and Poincar_ map are indicative of a quasi-periodic response. We

note that for this case there is little qualitative difference between the spectra for the fully

coupled and uncoupled cases. However, for the uncoupled response, the spectral peaks are

broader and the overall level higher, indicative that a prediction of more complex dynamics

would result from a calculation in which the coupling was neglected. We also note that for

the uncoupled computation there is a clear shift in the location of some of the frequency

spikes, particularly for frequencies greater than the fundamental.

Figures 12 and 13 illustrate the behavior of the near- and far-field pressure respec-

tively. In the near-field, the data appears to indicate quasi-periodic behavior similar to

the displacement. We note that while the phase diagram is very complex, there are large

regions of phase space that are not visited by the trajectory. Similarly, the Poincar_ map

indicates localized regions of relatively dense coverings. The time history for the far-field

pressure in Figure 13 is qualitatively similar to that of the near-field pressure. The PSD

indicates a more pronounced broadband behavior, while the phase diagram shows tilat a
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larger region of phase space is visited by the trajectory, suggesting more complex dynamics.

Similarly, the Poincar_ map indicates greater variation in the location of the maxima.

In Figure 14 we plot the instantaneous pressure distribution in the acoustic fluid. The

figure shows a marked lack of symmetry in the radiation and the development of multiple

peaks in the far-field. We also note the very rapid decay with distance of the pressure

peaks close to the plate.

• Nonlinear Plate Response and Acoustic Radiation

The window where such complex dynamics are found is very small. Upon increasing

E* further (E* - 0.0335), we find the clearly quasi-periodic plate response shown in Figure

15. The time history of the displacement shows that the response is non-periodlc; however,

each individual cycle is regular and almost sinusoidal. The PSD indicates that the relative

level of the 3f harmonic is reduced from the previous nonlinear cases with smaller values of

e*. There is now a clear f/3 subharmonic; however, there is an additional nearby frequency

peak which may account for the non-periodic time history. The most pronounced difference

between the spectra obtained from the fully coupled and uncoupled calculations is that the

uncoupled calculation exhibits a significantly higher level between spikes and a considerably

broader spike at the fundamental. We note that, unlike the previous case, both the fully

coupled and uncoupled calculations predict spikes at the same frequencies.

In Figures 16 and 17, we present near- and far-field pressure data for this case. The

near-field pressure shown in Figure 16 exhibits clear quasi-periodicity as can be seen from

the time history, PSD, phase diagram, and Poincar_ maps. We also note the influence of

higher harmonics on the time history, as each cycle is no-longer a simple sinusoid. The

development of higher harmonics and a broadband spectra in the far-field can be seen

from the data in Figure 17. In particular, we note that the trajectory visits a wider area

of phase space and the increased level of high frequencies in the PSD.

In Figure 18, we present a surface plot of the instantaneous pressure distribution. We

note the development of additional ripples in the pressure field as the waves propagate out

to the far-field. In addition, there is a clear directionality in the far-field radiation pattern.

12



In this casethe near-field exhibits considerablymore order than in the previous case(see

Figure 14).

5. Concluding Remarks

In this paper, we have determined the behavior of a flexible plate using a model that

accounts for the full coupling of the plate vibration to the surrounding fluid. For low-level

acoustic forcing of the plate, the coupling is weak and need not be considered in making

accurate predictions of plate response. For higher amplitude forcing, the effect of the

coupling is significant. Generally, the effect of the coupling is to increase the damping

on the structure and therefore decrease the response level. Additionally, the coupling can

delay subharmonic transitions that occur as the level of the excitation is increased. Thus

the response of the plate accounting for acoustic coupling is similar to the response of an

uncoupled plate using a reduced level of acoustic excitation. The results show that accurate

computation of plate response in the nonlinear regime must account for the coupling with

the surrounding fluid.

As the level of acoustic excitation is increased, we find different dynamical responses of

the plate. Increasing the excitation level from the linear level leads to a nonlinear response,

characterized by the appearance of harmonics in the plate response. Further increase of the

excitation level leads to the development of a complex quasi-periodic or chaotic response,

characterized by the appearance of both subharmonics and harmonics. Increasing the level

still further leads to a reduction in complexity of the plate response, a reduction in the

harmonic content of the solution, the development of sharp spectral bands, and distinct

subharmonics.

The nonlinear propagation of the acoustic pressure resulting from the nonlinear and

chaotic plate vibration has also been studied. Our results show that while the plate re-

sponse is highly nonlinear, the acoustic wave propagation is weakly nonlinear. This type

of propagation is characterized by an increase in harmonic content relative to the funda-

mental as the distance from the plate increases. In addition, the spectra of the far-field

pressure show some broadening of the peaks also characteristic of nonlinear propagation.

The results presented in this paper are in good qualitative agreement with the exper-

imental and numerical results obtained by Maestrello et al. [17].
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